Extensions 1→N→G→Q→1 with N=C22 and Q=C3⋊S4

Direct product G=N×Q with N=C22 and Q=C3⋊S4
dρLabelID
C22×C3⋊S436C2^2xC3:S4288,1034

Semidirect products G=N:Q with N=C22 and Q=C3⋊S4
extensionφ:Q→Aut NdρLabelID
C221(C3⋊S4) = PSO4+ (𝔽3)φ: C3⋊S4/A4S3 ⊆ Aut C22129+C2^2:1(C3:S4)288,1026
C222(C3⋊S4) = (C2×C6)⋊S4φ: C3⋊S4/C2×C6S3 ⊆ Aut C22246C2^2:2(C3:S4)288,1036
C223(C3⋊S4) = (C2×C6)⋊4S4φ: C3⋊S4/C3×A4C2 ⊆ Aut C22366C2^2:3(C3:S4)288,917

Non-split extensions G=N.Q with N=C22 and Q=C3⋊S4
extensionφ:Q→Aut NdρLabelID
C22.(C3⋊S4) = (C4×C12)⋊S3φ: C3⋊S4/C2×C6S3 ⊆ Aut C22366+C2^2.(C3:S4)288,401
C22.2(C3⋊S4) = SL2(𝔽3).D6φ: C3⋊S4/C3×A4C2 ⊆ Aut C22484C2^2.2(C3:S4)288,912
C22.3(C3⋊S4) = C6.GL2(𝔽3)central extension (φ=1)96C2^2.3(C3:S4)288,403
C22.4(C3⋊S4) = C2×C6.5S4central extension (φ=1)96C2^2.4(C3:S4)288,910
C22.5(C3⋊S4) = C2×C6.6S4central extension (φ=1)48C2^2.5(C3:S4)288,911
C22.6(C3⋊S4) = C2×C6.7S4central extension (φ=1)72C2^2.6(C3:S4)288,916

׿
×
𝔽